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Abstract
This paper investigates the inductive and covering dimension functions in topological spaces,
highlighting their significance in the classification and analysis of such spaces. Particular
attention is given to zero-dimensional and strongly zero-dimensional spaces, with an emphasis
on characterizing their properties and determining the conditions under which these spaces
possess an inductive and covering dimension of zero. The study underscores the broader
relevance of dimension theory in understanding and organizing the fundamental structure of
topological spaces.
Keywords: Clopen set, cover, covering dimension, dimension function, inductive dimension,
order, refinment, strongly zero-dimension space, subspace, shrinking, Tychonoff space, zero-
sets, zero-dimension space.
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1. Introduction

Dimension theory has a rich history, dating back to significant contributions from pioneers
like Henri Lebesgue, Pavel Urysohn, and Karl Menger. These mathematicians extended the
concept of dimension beyond simple geometric settings, formalizing it for more general
topological spaces. Their work established the rigorous foundations of modern dimension theory,
introducing essential concepts such as the inductive and covering dimension functions.

Dimension functions are crucial for understanding and classifying topological spaces,
particularly zero-dimensional spaces. These are spaces where every point has a basis of clopen
sets (sets that are both open and closed). Zero-dimensional spaces play an essential role in
topology, offering foundational insights into the structure and behavior of more complex spaces.
Moreover, they share a unique and significant relationship with dimension functions, particularly
the inductive dimensions ind, Ind, and covering dimension dim, which aid in the classification
and analysis of topological spaces.
For any topological space X, three key numerical dimensions can be assigned: the small
inductive dimension ind(X), the large inductive dimension Ind(X), and the covering dimension
dim(X). Each of these dimensions characterizes spaces in distinct ways. The natural domains for
ind, Ind, and dim are regular, normal, and Tychonoff spaces, respectively. These dimensions
provide a comprehensive framework for studying the complexity and structure of topological
spaces.
The primary focus of this paper is Section 4, which introduces Theorems 4.1, 4.5, 4.8, and 4.10.
These theorems provide necessary and sufficient conditions for typical spaces to possess
dimension functions equal to zero. By thoroughly analyzing these conditions, the study aims to
advance the understanding of dimension functions and their practical relevance. These
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characterizations highlight the broader importance of dimension functions in classifying
topological spaces and reveal the intricate connections between zero-dimensionality and more
complex dimensional structures.
2. Definitions and Preliminaries
Dimension functions are various mathematical functions that assign "dimension™ to a

topological space depending on the structure and properties of the space. These functions aim to
capture different aspects of dimensionality. The common dimension functions on topology are
the small (ind) and large (Ind) inductive dimensions and the covering dimension (dim).

The dimension function ind(X) of a topological space X defines the "dimension™ of the space X
by examining the complexity of boundaries of open subsets of the space.

The definition of the small inductive dimension is stated as follows:
Definition 2.1 Let X be a regular space and let ind(X) be an integer larger than or equal to -1 or
the “infinite number” co. We define ind(X) to be the small inductive dimension function of
X assigned to the space X and satisfies the following conditions:
(1) ind(X) = —1ifandonly if ¥ = ¢;
(2) ind(X) < n, where n = 0,1,2,..., if any point x € X and any neighborhood 7 € X of x there
exists an open set V¥ € X where x € V S U and ind (bd(V)) = n — 1.
(3) ind(X) = nif and only if ind(X) < n and ind(X) > n-1, so that ind (X) < n — 1 does not hold,;
@) ind(X) = ifind(X) =nforn=-1,01,...
The dimension function ind is called the Menger-Urysohn dimension.
The regularity property on a space X is hereditary, therefore if ind(X) is defined on X, it is
defined for any subspace of x.
The dimension function ind(X) of a topological space X is the smallest integer n such that every
point X € X has arbitrarily small neighborhoods whose boundaries have dimension n—1. If no
such n exists, we say ind(X)= .
Let X = R, the Euclidean plane, and consider any point xeX. Take a small open ball B(x)
centered at x with radius € = 0. The boundary of this open ball is a circle §* with 1-dimensional.
Since every point in X has neighborhoods whose boundaries are 1-dimensional then ind(X)=2.
Theorem 2.2 If S is any subspace of a regular space X then ind(5) < ind(X).
Proof. The theorem is true if ind(X) = oo. Suppose that ind(X) << co. To use induction for

ind(X). If ind(X) = —1, then by (MU1), X = ¢, which implies § = ¢, hence ind(5) = —1.
Assume that the inequality is proved for all spaces X with ind(X) =< n — 1. Consider a regular
space X with ind(X) = n, let 5 be a subspace of X, such that x € 5 and a neighborhood G of the
point x. Thus there exists an open subset U/ of X that satisfies G = 5 n U. Since ind(X) < n, so
by (MU2) there exists an open set V < X such that x € V € U and ind(bd(V)) = n — 1. The set
W =5nV is open in S and satisfies x € W S G and bd;(W) =Sn (S5nV)NS\V. Thus
bd;(W) is a subspace of bd(V), hence by the inequality assumption ind(bds;(V))=n—1
which together with (MU2) yields the inequality ind(5) = n.

The dimension function Ind(X) of a topological space is similar to dimension function ind(X)
but is defined by the existence of neighborhoods whose boundaries have dimensions that
gradually decrease. Here’s how it is defined :

Definition 2.3 Let X be a normal space and let Ind(X) be an integer larger than or equal to -1 or
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the “infinite number” co. We define Ind(X) to be the large inductive dimension function of
X assigned to the space X and satisfies the following conditions:

(1) Ind(X) = —1ifand only if X = ¢;

(2) Ind(X) < n, where n =0,1,2,..., if any closed set B € X and any open set I < X which
contains B , there exists an open set V < X where B € V C U and Ind (bd(V)) <n — 1.

(3) Ind(X) =nifandonly if Ind(X) < nand IndX =n — 1;

@) Ind(X) = ifInd(X) = nforn=-1,01,...

The dimension function Ind is called the Brouwer-Cech dimension.

If Ind(X) is defined then Ind(F) is defined for every closed subspace F of X.

The next theorem is in [6]

Theorem 2.4 If F is a closed subspace of a normal space X then Ind(F) < Ind(X).

In the last theorem, when F is any subspace of X but not closed, the theorem does not hold.

For examle, consider =, the usual Euclidean plane, which is a normal space with Ind(R&=)=2.
Define A =R*\{(x,v)eR*:x*+y* <1}, the complement of the closed unit disk
D ={(x,y)eR*: x= + v < 1}. The set A consists of the Euclidean plane with the interior of the
unit disk removed, leaving a space with a hole. Let F = {(x, v)eR*: x* + y* =r*,1 <r < 2}
be a closed subset of the subspace A. To satisfy Ind(A) < 2, the boundary bd(U) where U is a
neighborhood in A must be separable into disjoint closed subsets by removing a subset of
dimension < 1. Since bd(U) cannot be separated by removing subsets of dimension <I, the
condition for Ind(A ) < 2 fails. This implies that Ind(A) > 2.
The order of a family: Let & = {K_}... be a family of subsets of a set X which is the largest
integer n such that the family Z contains n + 1 sets with non-empty intersection, or the “infinite
number” oo, if no such integer exists. Thus if the order of a family Z equals n then for any n + 2
members K, ,K_,...,K. _of X wehave K. nK_ n...nK_ = ¢. The order of a family &
is denoted by erd(X).

Remark that if a family & has order —1, then it consists of the empty set alone and if it has
order 0, then it consists of pairwise disjoint sets not all of which are empty.

A subset M of a space X is called zero-set if there exists a continuous function f: X — I
such that M = f~*({0}). If M is a zero-set, then M*® is called a cozero-set. The countable
intersection of zero-sets is a zero-set and the countable union of cozero-sets is a cozero-set.

If £ is a continuous real-valued function on a space X, then {x: f(x) = r}, {x: f(x) < r}and
fx: f(x) = r} are zero-sets and the set {x: f(x) < r}is a cozero-set for all r € R.

Before stating the definition of the covering dimension “dim”, we provide the following
definitions:

(i) Let T be a cover of a space X.Then U is a refinement of another cover V of the same space
X if for every U € U there exists ¥V € V such that € V. Then ord(U) < ord(V), and every
subcover of v is a refinement of V.

(ii) Let .4 = {A,}, ., be a cover of aspace X. Then a cover B = {B,}.., of X is a shrinking of -4
if B. € A, for all i € I. A shrinking is open (closed) if all its members are open (closed) subsets
of the space X.

Note that: Every shrinking B of a cover A is a refinement of .4 and ord(B) < ord(A).

The covering dimension (dim) of a topological space X is closely linked to cozero-sets and finite
refinements. Cozero-sets, which form open covers of X, serve as building blocks for finite
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refinements. For a space with dim(X) = n, every open cover can be refined so that no point is

included in more than n+1 sets. By organizing cozero-sets through partitions of unity or
continuous functions, they reflect the local topological complexity of X. This connection
highlights how dim quantifies the "layered" structure of a space. Cozero-sets help verify whether
refinements satisfy dimensional constraints, offering a practical tool for analyzing topological
spaces and deepening our understanding of their structure.

This concept of covering dimension is defined as follows:
Definition 2.5 Let X be a Tychonoff space and let dim(X) be an integer larger than or equal to -
1 or the “infinite number” co. We define dim(X) to be the covering dimension function of
X assigned to the space X and satisfies the following conditions:
(1) dim(X) = —1ifandonly if X = ¢;
(2) dim(X) < n, if every finite cover by cozero-sets of the space X has a finite refinement
consisting of cozero-sets of order < n;
(3) dim(X) = nifdim(X) < nand dim(X) = n —1;
@) dim(X) = wifdim(X) =nforn=-1,0,1,...
The covering dimension dim is called the Cech-Lebasgue dimension.
Le S be a subset of a space X . Then S is called £*-embedded in a space X if every continuous
function f: 5 — I can be extended to a continuous function F: X — I. This property ensures a
strong topological connection between S and X, which plays a role in preserving dimension
related properties.
For the proof of the next theorem see [5].
Theorem 2.6 If 5 is a C*-embedded subspace of aTychonoff space X, then dim(S) < dim(X).

The next two theorems show that finite covers, shrinkings, and cozero-sets are central to
characterizing the condition dim(X) < n for a Tychonoff space X. These characterizations
connect the concepts of finite covers, shrinkability, and cozero-sets to dimension theory.
Theorem 2.7 Any Tychonoff space X has dim(X) < n if and only if any finite cover by cozero-
sets of the space X has a shrinking contains cozer-sets of order < n.
Proof. (=) Let {U,}%, be a cover by cozero-sets of a Tychonoff space X satisfying
dim(X) < n. Then there exists a refinement W = {W.}.—, consists of cozero-sets of order < n
and for each j < I choose an i(j) < k such that W, S U, ,,. Let V, =u{W.:i(j) =i}. The
collection {V;}£_, is a shrinking consisting of cozero-sets of the cover {IJ;}%_, and has order not
exceeding n. Since each point of X is in some members of W and then in some V., each point of
X is in ant most n + 1 members of W. Implies that each of them is associated with a unique U..
Therefore x is at most in n + 1 elements of {1/}, .

(=) Let {U.}E_, be a cover by a shrinking {V;}:_, consisting of cozero-sets of order< n
and by the definition of shrinking {I.}_, is a finite refinement consisting of cozero-sets of
order< n. So dim(X) < n.

The next theorem was proved in [3].
Theorem 2.8 A Tychonoff space X has dimX < n if and only if every finite cover {U, 12" by
cozero-sets of X has a shrinking {W, 17> consisting of cozero-sets such that N"2* W, = g¢.
3.Topological spaces with zero-dimensionality property:

The zero-dimensionality property of topological spaces is a fundamental concept in topology,
characterized by simplicity in structure and lack of connectedness. A topological space with this
property is called a zero-dimensional space and has features such as a basis consisting of clopen
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(simultaneously open and closed) sets, and a dimension of zero in both the inductive and
covering dimension senses. It serves as a basic, concrete example for exploring fundamental
topological concepts like dimension, separability, and disconnectedness.

Definition 3.1 A space X is called zero-dimensional if X is a non-empty T, -space and has a base

consisting of clopen sets.
Any set with a discrete topology (where every subset is open) is zero-dimensional. This is
because it satisfies the T, separation property and has a base of clopen sets.

Let B be the set of real numbers and 7 be the family of all intervals [x,7) where x,r € &,
x < r. Then the members of 7 are clopen with respect to the topology generated by 7 on R. This
topology is zero-dimensional space and called “Sorgenfrey-line” and we denote it by K.

Proposition 3.2 Every non-empty subspace of a zero-dimensional space is zero-dimensional.
Proof. Since every subspace of a T,-space is T;, so zero-dimensionality property will be a

hereditary property.

The following proposition presents the natural relationship between Tychonoff spaces and zero-
dimensional spaces.

Proposition 3.3 A topological space is Tychonoff if it is zero-dimensional space.

Proof. Let X be a zero-dimensional space. Let ¥ € X and 4 be a closed subset of X such that

v €A, Then v € A° = U, where U is open set in X. By zero-dimensionality of X, there exists a
clopen set ¥V in X such that v €V S U, Let f: X — I be the continuous function defined by
f(x)=0, if x€ Vand f(x) =1,if x€V. Then f(y)={0} and f(x)={1} for each x € A.
Therefore, X is a Tychonoff space.

The real line B with the usual topology is an example of a Tychonoff space which is not
zero-dimensional. The space R is a Tychonoff space because it can be separate points from
closed sets with continuous functions. However, R is not zero-dimensional because it is not

totally disconnected. A zero-dimensional space is totally disconnected, meaning its connected
components are singletons. In I, the connected components are intervals (not single points),

which makes it non-zero-dimensional.
Theorem 3.4 The cartesian product I7,.,X; where [ = ¢ and X; = ¢ for all i €I is a zero-

dimensional space if and only if X; is zero-dimensional for all i € I.

Proof. (=) Let X = I1,.;X; be a zero-dimensional space. To show that X; is zero-dimensional
for each i € I. For each i € I, X; is homeomorphic to a subspace of X. Since X is a T,-space and
T, is hereditary property so by Proposition 3.2, X, is zero-dimensional for all i € I.

(=) Let xeX=I,,X;, and U be an open set in X with x€U. Let
B =p; '(U)Nnp_'(Uy)N...np ' (U,) be a basic neighborhood of x such that x € B S U.
Since x = (x;);; then Uy is an open set containing x;, for all k = 1,2,...,n. Since X; is zero-
dimensional, let W, Dbe a clopen set in X, such that x, €W, U, Let
W=p (W) np_ (W) n..np_*(W,), then W is a copen set in X such that
x, E W E B S U, Therefore x € W S U and because X is a T,-space so X is zero-dimensional.
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Definition 3.5 A space X is called strongly zero-dimensional if X is a non-empty Tychonoff
space and any cover {U.}¥_, of X by cozero-sets has an open refinement {V;}'Z, such that
V; NV, = ¢ whenever i #j.

In the above definition the refinement {V;}Z, consists of clopen sets and thus is a cover of X
by cozero-sets.

A strongly zero-dimensional space is a space where every open set has a clopen base. A
subspace of a strongly zero-dimensional space inherits the property of having a basis consisting
of clopen sets in the subspace topology. Thus, subspaces of strongly zero-dimensional spaces
retain a zero-dimensional structure. However, the subspace of strongly zero-dimension space
does not necessarily inherit the property of having a clopen basis for all open sets in the
subspace. Therefore, not every subspace of strongly zero-dimensional space is strongly zero-
dimensional space.

Let K and H be two subsets of a space X.Then K and H are called completely separated if
there exists a continuous function f:X — I such that f(x)={0} for each x € K and
f(x) = {1} for each x € H then we say that f separates the sets K and H.

Proposition 3.6 Let A and B be disjoint zero-sets in the space X. Then A and B are completely
separated.

Proof. Let g, h: X — I such that A = g~*({0}) and B = h™*({0}). Let f: X — I be a function
defined by f(x)=g(x)/(g(x)+h(x)) for each x € X. Since A NB = ¢, hence f is a continuous
function and if x € A then f(x) = {0} and if x € B then f(x) = {1}.

If 4 and B are disjoint zero-sets in a space X then A = f~1({0}) and B = f~*({1}) for some
continuous function f: X — 1.

The next theorem is in [5].
Theorem 3.7 Let X be a non-empty Tychonoff space. Then X is strongly zero-dimensional
space if and only if for every pair 4, B of completely separated subsets of X there exists a clopen

set U =X whereA S U S X\B.

4. Applications of dimension functions to zero-dimensional spaces:

This section presents the main results of the paper, which provide various characterizations
of topological spaces where the dimension functions are zero. By exploring these
characterizations, we aim to deepen the understanding of the conditions that lead to zero-
dimensional spaces exhibiting these dimension properties.

Note that if U is a clopen subset of a space X, then bd(U) = U nU< = U N U° = ¢.
The regularity of a space offers a clear characterization for a space X to have ind(X) = 0 along

with the zero-dimensionality property. The following theorem provides a concrete interpretation
of this concept.
Theorem 4.1 A regular space X has ind(x)=0 if and only if X is zero-dimensional.
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Proof. (=) Let X be a regular space with ind(X) = 0. Let x € X and U open in X such that
x € U, Since ind(X) = 0, there exists open set V' in X such that ind(bd(V)) < —1. So
bd(V) = ¢ and then V is clopen and x € V = U. Implies that X has a base B consisting of
clopen sets where B = {VV < X: V is clopen }. Since X # ¢ so X is zero-dimensional.

(=) Let x € X and U be open in X, where x € U. Since X has a base B consisting of clopen
sets, there exists B € B such that x € B € U and bd(B) = ¢. Hence ind(bd(B))= —1 and
ind(X) = 0. Since X # ¢, so ind(X) = 0.

Corollary 4.2 A regular space X has ind(X) = 0 if and only if any point in X has a local base

consists of clopen sets.
Proposition 4.3 Every non-empty countable metrizable space X is zero-dimensional.

Proof. Let X be any point of a countable metrizable space X and {x,.x,, x5,...} be the set of
other points in X. Let d be a metric on X and s; = d(x,x;) forall i € M. The set {5, 55, 55,...}iS
a countable subset of R. If B;(x,<) is any spherical neighborhood of x., then there exists a
positive real number &, & < e and & # s, for all i € M. Thus B;(x,8) < B,(x, <) and there are
no points of X at a distance & from Xx. Hence the set bd(B;(x,§)) = ¢ and B,(x, ) is a clopen
set. This means X has a local base consisting of clopen sets. Since x was any point in X so by
Corollary 4.2, X is zero-dimansional.

Corollary 4.4 The set of rational numbers with the usual topology is zero-dimensional.

Note that not every metrizable space X is zero-dimensional. For example, the set IR with the

usual topology is metrizable but not zero-dimensional.
The following theorem shows that the compactness of a topological space offers a
characterization that allows a space X to have Ind(X) = 0, in addition to possessing the zero-

dimensionality property. This result can be found in Nagata's work on compact Hausdorff spaces
and the theory of dimension see [7].

Theorem 4.5 Let X be a compact Housdorff space. Then X has Ind(X)=0 if and only if X is
zero-dimensional.

Proof. (=) Let X be a compact Hausdorff space with Ind(X) = 0. Let x € X and I/ be an open
subset of X containing x. So {x} is a closed set in X and {x} S U and Ind(bd(V)) = —1.
Implies that bd(V) = ¢ and then V is a clopen set. Therefore, X has a base B consisting of
clopen sets where B = {V: V' is open in X'}. Since X # ¢, hence X is zero-dimension.

(<) Let X be a compact Hausdorff space and E be a closed subset of X. Let U be an open set
with E S U. By zero-dimensionality of X, there exists a clopen set V. in X and for each x € E,
we have xE V.S U and E S (U,.z V) EU. Since E is a compact set , there exist
Ve Ver-o-Vxysuchthat E € (Uiz, V. ) € U where U=, V. is aclopen set in a normal space X.

Thus Ind(bd(Uz; V) = =1 which is mean that Ind(X) < 0. Since X # ¢, therefore
Ind(X) = 0.
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Theorem 4.6 A normal space X has Ind(X) = 0 if and only if any disjoint pair of closed sets

can be separated by clopen sets.
Proof. (=) Let X be a normal space with Ind(X) = 0. Let E,F be disjoint closed sets in X.

Since E € F* and Ind(X) = 0 hence there exists a clopen set I such that E < V & F*, Because
V S F°soF S V* andthen V,V° are disjoint clopen sets such that E S V and F € V°.

(=) Let E be closed and U be open subsets of a normal space X with E S U. So EnU® = ¢.
Then E, U* are disjoint closed sets and by our hypothesis there exist V', W which are clopen in X
such that ESV,U°SW and VnW=¢ and VUW =X, bd(V)=¢. Therefore,
V=W®CUandthen E €V S U. Thus Ind(bd(V)) = —1 and then Ind(X) < 0. Since X # ¢
so Ind(X) = 0.

By a swelling of a family {4,},-; of a space X we mean any family {EB,};-; of subsets of the
space X such that 4; < B, for all i € I and for any finite set of indices i,,i,,...,i,, € I we have
A, NA; n..nd; =¢ifandonlyif 5; NB;_nN...NB; =¢.

Note that swelling is open if its members are open subsets of the space X and every swelling
B of a family <A satisfies the equality erd(B) = ord(A).
Remark that a finite family consists of zero-sets of a space X has a swelling consisting of cozero-

sets.
Proposition 4.7 Every finite cover by cozero-sets of a space X has a shrinking consists of zero-

sets.
Proof. Let U = {U.}%, be a cover of cozero-sets of the space X. The family {X\U.}%, consists
of zero-sets with empty intersection because if x € X and x en {xX\U.}_, then x € X and
x & U, for each i = 1,2,..., k, which gives a contradiction. The family {x\U,}%, has a swelling
F = {V,}=, consisting of cozero-sets. Then the family F is a stringing of U consisting of zero-
sets.

In a normal space X, dim(X)=0 is equivalent to Ind(X)=0, both measuring the "degree of
separation” within the space. dim(X)=0 means every point has a clopen neighborhood base,
while Ind(X)=0 means closed sets can be separated by open sets in line with the inductive
dimension. This equivalence shows that in normal spaces, topological and inductive dimensions
coincide when the space is zero-dimensional as stated in the next theorem (see [4]).

Theorem 4.8 A normal space X has dim(X) = 0 if and only if Ind(X) = 0.

Proof. (=) Suppose dim(X) = 0, to show that Ind(X) = 0. Let E be closed in X and U be
open in X with E S U. Then E, U* are disjoint closed sets in X. Then there exists a continuous
function f: X — I such that f(E) = {0}, F(U®) = {1}. Let W, = F~*((0,1]),W, = F~*([0,1)),
then {W,.W,} is a cover of X by cozero-sets and since dim(X) = 0, so by Theorem 2.8, there
exists a shrinking {4, B} consisting of cozero-sets such that A S W,,E S W, and ANE = ¢.
Implies that A, B are clopen sets in X and E € B €W, such that Ind(bd(B))= —1. Thus
Ind(X) < 0.since X # ¢ so Ind(X) = 0.
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() Let X be a normal space a normal space where Ind(X) = 0. Let {U/,.U,} be an open cover
of X by cozero-sets. If U, += ¢, let F =U". Then F is a cozero-set in X and F < U,. Since
Ind(X) = 0, so there exists a clopen set V; such that F £V, € U,. Let V;, =V, then {V}.V:}is
a cover of X by clopen sets and V; NV, = ¢ such that V;, € U, and V, & F® = U,. Therefore
I, € U, and then dim(X) < 0. Since X # ¢, so dim(X) = 0.

The next proposition shows that the strongly zero-dimensional spaces are sub-classes of zero-
dimensional spaces.
Proposition 4.9 Every strongly zero-dimensional space X is zero-dimensional.
Proof. Let x € X and an open subset U of X containing x. Let f: X — I be a continuous function
defined by f(U®) = {0} and f(x) = {1}. Let A = f~*({1}) and B = f~*({0}). Therefore 4 and
E are two disjoint zero-sets and by Propoosition 3.7, 4 and B are completely separated sets.
Since X is strongly zero-dimensional, hence there exists a clopen set V' such that
ASVEX\B=U. Thus VEU and then xeV <SU. Since bd(V)=¢, hence
ind(bd(V)) = —1 and indX = 0. Because X # ¢, so indX = 0 and then X is zero-dimensional.

Remark that not every zero-dimensional space is strongly zero-dimensional. For examle,

the Sorgenfrey line R, defined above is zero-dimensional but is not strongly zero-dimensional.
Because there are open covers in this topology that cannot be refined into a finite collection of
clopen sets. For example, the open cover {[x,r): X, r € R and x < r} does not admit a finite

refinement of clopen sets, since the open sets are not "small enough” to be separated by a finite
number of clopen sets.

The comming theorem demonstrates the equivalence of dim(X)=0 and strong zero-
dimensionality in a Tychonoff space, highlighting a key connection between dimension theory
and separation properties. In particular, a space X is strongly zero-dimensional if and only if
dim(X)=0, which implies that any two disjoint closed sets in X can be separated by a clopen set.
This equivalence is guaranteed in Tychonoff spaces, where the separation axioms ensure the
presence of sufficient clopen sets. It emphasizes that the zero-dimensionality of a space is
intrinsically linked to its capacity to separate disjoint closed sets with clopen sets, establishing its
importance as a fundamental concept in topology.

The statement of the next theorem might be found in many difrent works (see [6] and [7])
dealing with the finer distinctions between various classes of zero-dimensional spaces, like in
Nagata's research or other foundational texts in dimension theory, which explore the
relationships between inductive dimension and zero-dimensionality.

Theorem 4.10 A space X has dim(X) = 0 if and only if X is strongly zero-dimensional.

Proof. (=) Suppose dim(X) = 0. Let {U/;, U,} be a cover of X by cozero-sets. By Proposition
4.7, the cover has a shrinking {W;,W,} consisting of cozero-sets such that W, n W, = ¢.
Therefore X is strongly zero-dimensional.

(<) Let X be a strongly zero-dimensional space and let U = {U.}%, be a cover of X by cozero-
sets. By Definition 2.5, the cover U has a finite open refinement Vv = {V.}i2, consisting of
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cozero-sets and V; n V; = ¢ whenever i # j and 1 < I,j < m. Thus ordV < 0 and by Definition
2.5, we have dimX = 0. since X # ¢, hence dim(X) = 0.

Every strongly zero-dimensional space is normal because the strongly zero-dimensional property
ensures that any two closed sets with empty intersection can be separated by a clopen set. This
separation condition is stronger than the standard separation condition required for normal
spaces. However, the converse is not true. For instance, the real line with the usual topology is a
normal space but fails to be strongly zero-dimensional.

The following corollary follows from the last theorem and the previous discussion.

Corollary 4.11 A normal space X has Ind(X) = 0 if and only if X is strongly zero-dimensional.

Proposition 4.12 Let X be a strongly zero-dimensional space and ¥ be a C*-embedded subspace
of X. Then Y is strongly zero-dimensional.

Proof. Since X is strongly zero-dimensional, hence by Theorem 4.10, we have dim(X) = 0 and
by Theorem 2.6, we have dim(¥) = 0. Since ¥ # ¢, hence dim(¥) =0 and therefore ¥ is
strongly zero-dimensional subspace of X.

Conclusion

This study has presented characterizations of zero-dimensional spaces in terms of their
inductive and covering dimensions, focusing on the conditions under which these dimensions
equal zero. Defined by their clopen bases, zero-dimensional spaces are fundamental in topology,
and their relationship with dimension functions provides critical insights into the classification
and structural behavior of topological spaces. This paper examined the structural properties that
result in zero values for the dimension functions ind, Ind, and dim. This study has made
connections between various topological concepts, enhancing the understanding of these unique
spaces. Additionally, the study highlighted the equivalences and distinctions among dimension
functions in zero-dimensional and strongly zero-dimensional spaces, contributing to a more
unified perspective within dimension theory.
We recommend that future research explore the behaviour of dimension functions in broader
contexts, providing deeper insights into their properties and enhancing our understanding of their
operation across diverse topological settings.
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